70 research outputs found

    Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers

    Full text link
    We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method for quadrupedal locomotion that leverages a Transformer-based model for fusing proprioceptive states and visual observations. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We show that our method obtains significant improvements over policies with only proprioceptive state inputs, and that Transformer-based models further improve generalization across environments. Our project page with videos is at https://RchalYang.github.io/LocoTransformer .Comment: Our project page with videos is at https://RchalYang.github.io/LocoTransforme

    CEIL: Generalized Contextual Imitation Learning

    Full text link
    In this paper, we present \textbf{C}ont\textbf{E}xtual \textbf{I}mitation \textbf{L}earning~(CEIL), a general and broadly applicable algorithm for imitation learning (IL). Inspired by the formulation of hindsight information matching, we derive CEIL by explicitly learning a hindsight embedding function together with a contextual policy using the hindsight embeddings. To achieve the expert matching objective for IL, we advocate for optimizing a contextual variable such that it biases the contextual policy towards mimicking expert behaviors. Beyond the typical learning from demonstrations (LfD) setting, CEIL is a generalist that can be effectively applied to multiple settings including: 1)~learning from observations (LfO), 2)~offline IL, 3)~cross-domain IL (mismatched experts), and 4) one-shot IL settings. Empirically, we evaluate CEIL on the popular MuJoCo tasks (online) and the D4RL dataset (offline). Compared to prior state-of-the-art baselines, we show that CEIL is more sample-efficient in most online IL tasks and achieves better or competitive performances in offline tasks.Comment: NeurIPS 202
    • …
    corecore